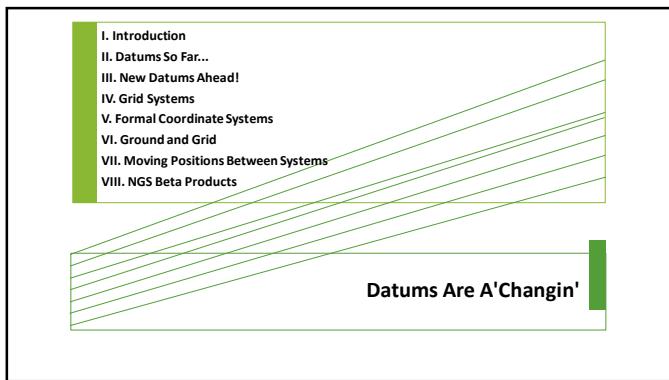


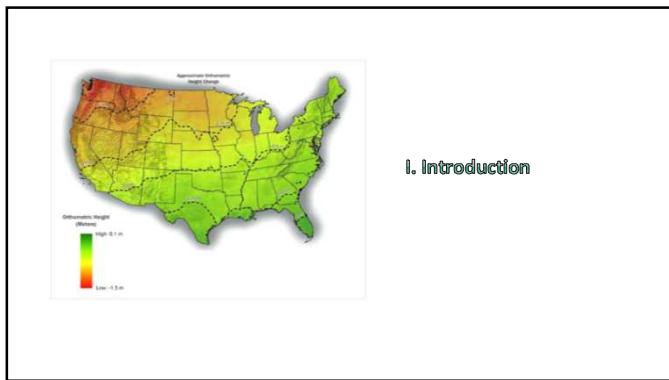
Datums Are A'Changin'

SSSI Workshop
09 January 2026
Jerry Mahun, PLS
Thrice-retired; Working on a Fourth
jerry.mahun@gmail.com
<https://jerrymahun.com>

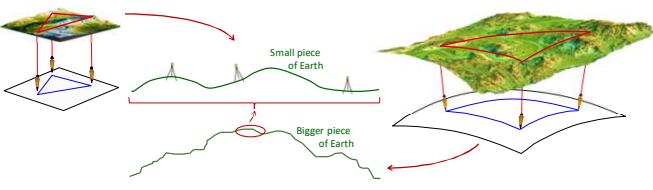


I. Introduction
II. Datums So Far...
III. New Datums Ahead!
IV. Grid Systems
V. Formal Coordinate Systems
VI. Ground and Grid
VII. Moving Positions Between Systems
VIII. NGS Beta Products

Datums Are A'Changin'



I. Introduction



I. Introduction

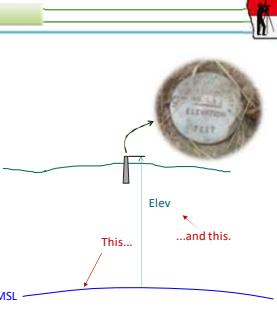
A. Physical Earth

The surface on which we measure.
Not mathematical.
Over small areas, we can assume a flat reference system – plane surveying
Over larger areas, must account for earth's shape and dynamics – geodetic surveying

Slide 4/85

Society of Land Surveyors of Iowa

I. Introduction


B. What's a datum?

Measurement reference surface.

Consists of a model and measurements referenced to the model.

Traditionally, Vertical and Horizontal datums separately defined because V & H measurements were different operations.

Contemporary 3D measurement platforms having impact on datum definition and refinement.

Slide 5/85

Society of Land Surveyors of Iowa

II. Datums So Far...

II. Datums So Far...

A. Vertical datum

Gravitational force = $f(\text{mass, distance})$
 Earth: non-homogeneous; mass anomalies

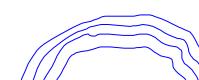
Centrifugal force = $f(\text{rotation, distance})$
 Minimum at Poles (dist=0),
 Maximum at Equator (dist=R_e)

Gravity = Gravitational+Centrifugal forces

Oblate spheroid: Flattened at poles,
 enlarged around Equator

Gravitational Force + Centrifugal force
Gravity

II. Datums So Far...


A. Vertical datum

Equipotential surface

A 3D surface along which (in-out) forces are uniform.

There are many equipotential surfaces. They are not mathematical.

Due to anomalies, nonhomogeneous mass, Earth wobble, varying Solar & Lunar forces, etc, equipotential surfaces are not smooth or perfectly parallel.

II. Datums So Far...


A. Vertical datum

Equipotential surface

Lines of gravity are perpendicular to equipotential surfaces

Because the surfaces are not parallel, gravity lines are not straight.

But they do all converge to the Earth's mass center.

II. Datums So Far...

A. Vertical datum

Equipotential surface

The Geoid is the equipotential surface that *nominally* coincides with sea level under calm windless conditions.

Sea level still affected by atmospheric pressure, temperature, evaporation, Solar and Lunar gravity, etc.

Geoid best fits "average" sea level conditions.

Slide 10/85

Society of Land Surveyors of Iowa

II. Datums So Far...

A. Vertical datum

A vertical line is the same as a line of gravity.

Centering a bubble or using a plumb bob orients equipment to the geoid.

Slide 11/85

Society of Land Surveyors of Iowa

II. Datums So Far...

A. Vertical datum

Geoid coincides with Mean Sea Level (MSL) and is the vertical datum.

How to determine MSL?

27 tide stations monitoring water levels for multiple years.
19 yrs req'd for full tidal cycle
Heights transferred to tidal benchmark at each
Benchmarks connected via survey and networks adjusted.

Slide 12/85

Society of Land Surveyors of Iowa

II. Datums So Far...

A. Vertical datum

History

- 1899: 1st General Adjustment
- 1903: 2nd General Adjustment
- 1907: 3rd General Adjustment
- 1912: 4th General Adjustment
- Sea Level Datum of 1929

Between adjustments, additional water level measurements recorded and network expanded.

FIRST-ORDER LEVELING

Map of the United States showing first-order leveling networks by 1929 adjustment. The map displays a dense network of lines representing survey routes across the country, with points marked along the lines. A legend in the bottom left corner provides information about the survey network.

First-order level networks by 1929 adjustment (NGS)

II. Datums So Far...

A. Vertical datum

Since 1929

- network expanded
- higher quality measurements forced to fit less accurate control network

Sea Level Datum of 1929 wasn't sea level or the geoid.

Needed new adjustment.

Constraints for new datum:

- FEMA Flood maps
- USGS 7-1/2 min topoquads.

Vertical network by 1984 (NGS)

II. Datums So Far...

A. Vertical datum

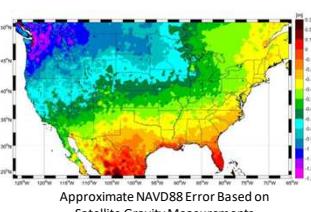
Held Father's Point (Rimouski, NSRS PID TV525)

North American Datum of 1988 (NAVD88).

Sea Level Datum of 1929 was retroactively renamed National Geodetic Vertical Datum of 1929 (NGVD29)

NAVD88 is refinement of NGVD29 and is not the geoid either.

Vertical network by 1984 (NGS)


II. Datums So Far...

A. Vertical datum

There is no exact conversion between NGVD29 and NAVD88.

Use *NGS Coordinate Conversion and Transformation Tool (NCAT)* on NGS website.

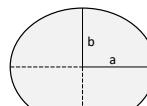
Since NAVD88 adoption, airborne and satellite gravity measurement platforms have been developed, facilitating better geoid modelling.

Approximate NAVD88 Error Based on Satellite Gravity Measurements

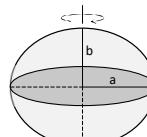
Slide 16/85

Society of Land Surveyors of Iowa

II. Datums So Far...


B. Pre-GPS Horizontal datum

1. Ellipsoid


A mathematical surface is needed to define a datum.
Positions must be referenced to it.
An ellipsoid is used.

Ellipsoid parameters

a: semi-major axis	$e = \sqrt{a^2 - b^2}$
b: semi-minor axis	a
e: eccentricity	$f = \frac{a - b}{a}$
f: flattening	

Ellipse

Ellipsoid:
Ellipse rotated about the semi-minor axis

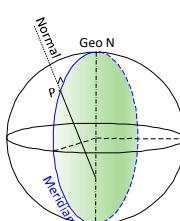
Slide 17/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

2. Position reference


In addition to the ellipsoid, datum definition includes a 3D position reference system.

Normal: A line from a point perpendicular to the ellipsoid

Meridian: An elliptical section containing the normal and semi-minor axis.

Defines Geodetic N at a point.

Meridians converge

Normal

Geo N

P

Meridian

Geo S

Slide 18/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

2. Position reference

Geodetic Coordinates

Longitude (λ) - Angle in the semi-major axis plane E or W from Greenwich Meridian to point meridian
0°-180°W; 0°-180°E

Latitude (ϕ) - Angle in point meridian N or S of the semi-major axis plane to the normal
0°-90°N; 0°-90°S

Slide 19/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

2. Position reference

Geodetic Coordinates

Disadvantages:

- Positions are expressed in angular values
- Distances are in angular values
- Elliptical geometry
- Shortest distance between two points is a *geodesic* - shallow s-shape curve.

Slide 20/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

3. Fitting

Prior to satellite measurement systems, it was typical to fit an ellipsoid regionally

A centrally located point is used as the origin.

Ellipsoid and geoid coincide at this point

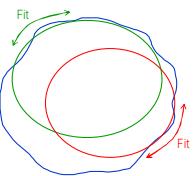
Fixed parameters:

- Origin's geodetic latitude and longitude
- Azimuth of a line from the origin
- Two ellipsoid parameters

Slide 21/85

Society of Land Surveyors of Iowa

II. Datums So Far...


B. Pre-GPS Horizontal datum

3. Fitting

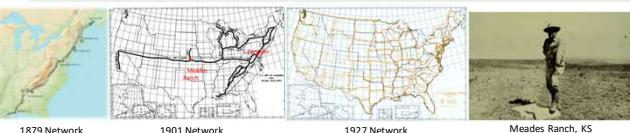
Making the geoid and ellipsoid coincide assumes the two surfaces do not separate significantly throughout the area.

Reasonable assumption for an early datum definition before a good mathematical geoid model was available.

The error introduced wasn't significant for most surveys.

Slide 22/85

Society of Land Surveyors of Iowa



II. Datums So Far...

B. Pre-GPS Horizontal datum

4. North American – Regional Fit

Datum	Ellipsoid	Origin	Comments
New England Datum - 1879	Clarke 1866	Principio	Eastern coast and NE states
US Standard Datum - 1901	Clarke 1866	Meades Ranch	Transcontinental & Pacific arcs; 5000 pts
North American Datum - 1913	Clarke 1866	Meades Ranch	Canada & Mexico tied in
North American Datum - 1927	Clarke 1866	Meades Ranch	25,000 points

1879 Network 1901 Network 1927 Network Meades Ranch, KS

Slide 23/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

5. North American – Global Fit

By the 1970s

Network increased to over 270,000 points

Newer more accurate measurements were forced to fit less accurate control network.

VLBI and early satellite systems (eg, TRANSIT) required global perspective.

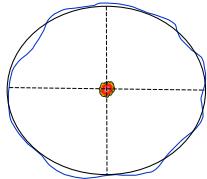
Horizontal Network, 1980

Slide 24/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum


5. North American – Global Fit

A new ellipsoid, GRS80, was fit to the Earth's mass center.
Ellipsoid and geoid not forced to coincide anywhere.

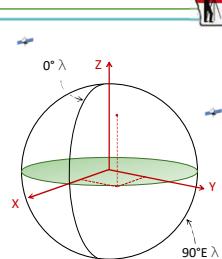
Semi-major axis in equatorial plane.
Semi-minor axis coincides with polar axis.

Slide 25/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum


5. North American – Global Fit

Terrestrial Coordinate System - TCS
A new 3D coordinate system introduced
Used by early satellite systems

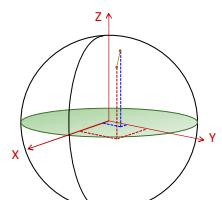
Three axis rectangular system
Origin at Earth's mass center
X-Axis in Equatorial plane through 0° Longitude (Greenwich Meridian).
Y-Axis in Equatorial plane through 90° East Longitude
Z-axis is perpendicular to equatorial plane in direction of N pole and coincident with rotational axis.

Slide 26/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum


5. North American – Global Fit

Terrestrial Coordinate System - TCS

Disadvantages:
Huge coordinate values.
Negative coordinates
No "up" (vertical direction)
Top and bottom of vertical structures have different 3D coordinates.

Slide 27/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

5. North American – Global Fit

Geoid-Ellipsoid relationship is a function of Skewness and Vertical separation.

Skewness - Deflection of the vertical, δ
Angle between directions of gravity and ellipsoid normal.

Slide 28/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

5. North American – Global Fit

Geoid-Ellipsoid relationship is a function of Skewness and Vertical separation.

Vertical separation
Heights between the surfaces
H - Orthometric: geoid to ground
N - Geoid: ellipsoid to geoid
h - Ellipsoidal: ellipsoid to ground

$h = H + N$

Slide 29/85

Society of Land Surveyors of Iowa

II. Datums So Far...

B. Pre-GPS Horizontal datum

5. North American – Global Fit

Geoid-Ellipsoid relationship is a function of Skewness and Vertical separation.

LaPlace Corr'n, ξ
The component of δ that relates GeodeticN (GN) and AstronomicN (AN) at a particular latitude.

Was a common correction applied when performing astro obs for meridian determination.
See Sec 2-27 & -28, 2009 Manual

Slide 30/85

Society of Land Surveyors of Iowa

II. Datums So Far...

C. Post-GPS Horizontal Datum

NAD83 was completed in 1986; referred to as NAD83 (86): *First realization*
GPS was not operational so was not included in NAD83 (86)
Many states created their own HPGN/HARN and tied them to the national network via GPS.
Found distortions in NAD83 (86) so NGS did state-by-state readjustments creating an updated NAD83 (xx) for each, xx being the year.

NGS did a national readjustment including state HARNs - NAD83 (HARN): *Second realization*

Two more realizations followed:

NAD83 (NSRS2007)	CORS added; GPS observed points only
NAD83 (2011)	Additional CORS & GPS observations. Current reference.

II. Datums So Far...	
C. Post-GPS Horizontal Datum	
Geologic tectonic plates	
North American	NAD83 (2011) Has three regions:
North American	NAD 83 (2011)
Pacific	NAD 83 (PA11)
Mariana	NAD 83 (MA11)

II. Datums So Far...

D. Epochs

Dynamic nature of Earth

- Tectonic plates move wrt each other
- Movements within plates (eg, fault lines)
- Lunar and Solar gravitational attraction
- Control points move, they have velocity.

Datum tagged with an Epoch: timestamp

NAD 83 (2011) Epoch 2010.00

Format: Year,DayOfYear/365
(366 for Leap Year)

01/01/2010: 1/365=0.00 \Rightarrow 2010.00

02/15/2016:
 $(31+15)/366=0.126 \Rightarrow 2016.126$

II. Datums So Far...

E. Reference Frameworks & Ellipsoids

NAD83 (xx) uses Geodetic Reference System of 1980 (GRS 80)
 National Imagery and Mapping Agency (NIMA, formerly Defense Mapping Agency) uses the World Geodetic Reference System of 1984 (WGS 84)
 GPS reference system
 International Terrestrial Reference System (ITRS) uses its own ellipsoid.

All are intended to be geocentric, although GRS80 is off ~2 meters.
 Associated 3D XYZ coordinate axes are located slightly differently.

	Semi-minor axis, m	Flattening
GRS 80	6,378,137.0	1/298.25722101
WGS 84	6,378,137.0	1/298.257223563
ITRS	6,378,136.49	1/298.25645

Slide 34/85

Society of Land Surveyors of Iowa

II. Datums So Far...

E. Reference Frameworks & Ellipsoids

Example: OPUS Adjustment Results

REF FRAME:	NAD_83 (2011) (EPOCH: 2010, 0000)	ITRF2020 (EPOCH: 2025, 96134)
X:	-35265.046 (m)	0.004 (m)
Y:	-4701349.893 (m)	0.007 (m)
Z:	4296015.495 (m)	0.009 (m)
LAT:	42 36 41.18389	0.006 (m)
E LON:	269 34 12.82703	0.004 (m)
W LON:	90 25 47.17297	0.004 (m)
EL HGT:	268.817 (m)	0.009 (m)
ORTHO HGT:	301.690 (m)	0.018 (m)
[NAVD88 (Computed using GEOID18)]		

Note: 1" Lat ~100 ft, 1" Long ~75 ft

Slide 35/85

Society of Land Surveyors of Iowa

II. Datums So Far...

F. NSRS

National Spatial Reference System

- Evolved from pre-NAD83 control network and datasheets

Physical Marks
 Spatial information
 Historical lineage

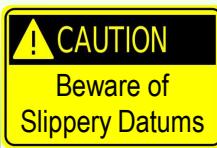
c1980s NGS no longer had mark maintenance budget.
 Many marks destroyed or disturbed.
 Poor locations for GPS obs.

Slide 36/85

Society of Land Surveyors of Iowa

II. Datums So Far...

F. NSRS	Modeled information
National Spatial Reference System	Geoid ht
2. NAD 83	Ellipsoid ht
Datasheets converted to digital database	LaPlace Corr'n
All points made 3D	Updated to-reach and condition info.
Scaled elev added to horizontal points	Easier to contribute condition information, incl photos
Approx Lat/Long added to BMS	
Some points:	Points added as developed and between realizations
Measured gravity	CORS
Local/Network accuracy	Height Modernization
Point velocities	


Slide 37/85 **Society of Land Surveyors of Iowa**

II. Datums So Far...

F. NSRS	Modeled information
A38303 SACS - THIS IS A SECONDARY AIRPORT CONTROL STATION.	
A38303 DESIGNATION - AMW P	
A38303 ELLIPSOID - WGS 84	
A38303 STATE/COUNTY - IA/STORY	
A38303 COUNTRY - US	
A38303 USGS QUAD - SLATER (2018)	
A38303 *CURRENT SURVEY CONTROL	
A38303 NAD 83(CSRS) POSITION: 41 59 55.26242(N) 093 37 31.13374(W) ADJUSTED	
A38303 ELLIP: HT: 251.419 (meters) (06/27/12) ADJUSTED	
A38303 <u>WGS 84</u> ORTHO HEIGHT: 281.00 (meters) 92.9 (feet) GPS OBS	
A38303 WGS 84 orthometric height was determined with geoid model GEOD299	
A38303 GEOD HEIGHT - -29.528 (meters) GEOD299	
A38303 VERT SHIFT - -0.000 (meters) VERT2015	
A38303 WGS 83(CSRS) X - 300,177,724 (meters) COMP	
A38303 Y - 1,000,000,000 (meters) COMP	
A38303 WGS 83(CSRS) Z - 4,245,663.436 (meters) COMP	
A38303 LAPLACE CORR: -0.21 (seconds) DEFLC18	
A38301 *SUPERSEDED SURVEY CONTROL	
A38301 NAD 83(CSRS) - 41 59 17.60878(N) 093 37 05.65529(W) ADC(2002.00) 0	
A38301 ELLIP: H (01/10/07) 251.208 (m) 90.0 (feet) GPS(2002.00)	
A38301 ELLIP: H (06/15/04) 251.208 (m) 90.0 (feet) GPS(2002.00)	
A38301 ELLIP: H (12/27/02) 251.224 (m) 90.0 (feet) GPS(2002.00)	
A38301 ELLIP: H (01/10/07) 251.229 (m) 90.0 (feet) GPS(2002.00)	
A38301 ELLIP: H (03/18/02) 280.83 (m) GEOD99 model used GPS OBS	
A38301 NAD 88 (03/18/02) 280.83 (m) GEOD99 model used GPS OBS	

Slide 38/85 **Society of Land Surveyors of Iowa**

III. New Datums Ahead!

CAUTION
Beware of
Slippery Datums

Slide 38/85 **Society of Land Surveyors of Iowa**

III. New Datums Ahead!

A. Why?

Why not?
 NAVD 88 is offset and tilted relative to best current geoid model
 NAD 83(2011) is misaligned by approx. 2.2 meters from Earth's center
 Correcting both will change point horizontal and vertical positions up to 4 meters

Modernized NSRS will rely on GNSS stations:
 Improved horizontal accuracy
 Improved vertical accuracy
 Ease of maintenance and updates
 Responsiveness to significant geological events, like earthquakes

Slide 40/85

Society of Land Surveyors of Iowa

III. New Datums Ahead!

B. Vertical Datum

North American-Pacific Geopotential Datum of 2022 (NAPGD2022)
 New gravity-based geopotential datum based on a refined geoid model
 Will contain info to provide consistent orthometric heights, geoid variations, gravity anomalies, deflections of the vertical, and all other geodetic coordinates related to the gravity field.

Based on time-dependent GEOID2022

Approximate Geodetic Height Change

Approximate Geodetic Height Change

Approximate Geodetic Height Change

Slide 41/85

Society of Land Surveyors of Iowa

III. New Datums Ahead!

C. Horizontal Datum

Three NAD 83 reference frames replaced with four plate-fixed frames:
 North American Terrestrial Reference Frame of 2022 (NATRF2022)
 Pacific Terrestrial Reference Frame of 2022 (PATRF2022)
 Mariana Terrestrial Reference Frame of 2022 (MATRF2022)
 Caribbean Terrestrial Reference Frame of 2022 (CATRF2022)

Each frame will be identical to ITRF2020 at epoch 2020.00.

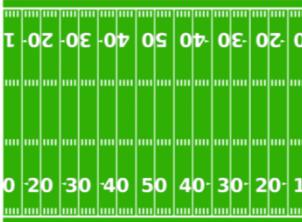
Approximate Horizontal Change

Approximate Horizontal Change

Approximate Horizontal Change

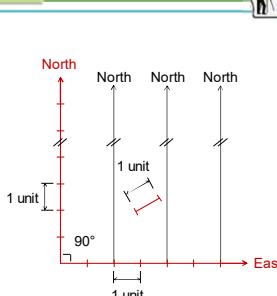
Slide 42/85

Society of Land Surveyors of Iowa



IV. Grid Systems

IV. Grid Systems


A. Two Dimensional

1. Planar

Desirable characteristics

- a. Orthogonal
- b. Parallel north lines
- c. Uniform scale in all directions

Comps are simple.

Slide 44/85
Society of Land Surveyors of Iowa

IV. Grid Systems

A. Two Dimensional

2. Why 2D not 3D?

a. Geodetic Coordinates

- Must reduce points to ellipsoid
- Positions in angular values
- Ellipsoid geometry complex

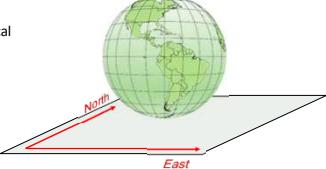
b. Terrestrial Coord System

- 3D space vector
- Huge coordinates – cumbersome.
- No "up"

c. Grid Coordinates

- Must reduce ground to grid – simple math

Slide 45/85
Society of Land Surveyors of Iowa



IV. Grid Systems

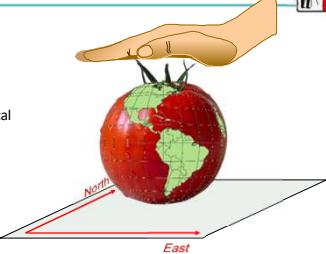
B. 3D to 2D

We're on a 3D surface

We want to put it in a 2D mathematical system

Slide 46/85

Society of Land Surveyors of Iowa



IV. Grid Systems

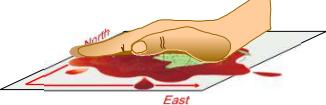
B. 3D to 2D

We're on a 3D surface

We want to put it in a 2D mathematical system

Slide 47/85

Society of Land Surveyors of Iowa


IV. Grid Systems

B. 3D to 2D

We're on a 3D surface

We want to put it in a 2D mathematical system

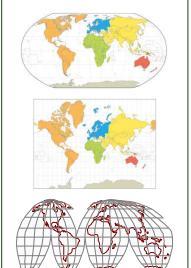
With a direct projection we get a distorted representation

Slide 48/85

Society of Land Surveyors of Iowa

IV. Grid Systems

B. 3D to 2D


We're on a 3D surface

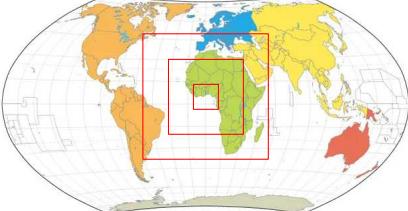
We want to put it in a 2D mathematical system

With a direct projection we get a distorted representation

Different mathematical projections distort different ways.

Slide 49/85

Society of Land Surveyors of Iowa



IV. Grid Systems

B. 3D to 2D

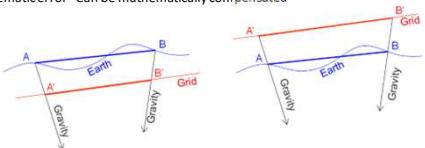
The smaller the area projected, the smaller the distortions.

Slide 50/85

Society of Land Surveyors of Iowa

IV. Grid Systems

C. Distortions


The two distortions are

1. Distance

Ground points must be projected vertically to the 2D grid plane. This moves them closer together or further apart, altering distance.

Distance distortion = $f(\text{heights, grid fit})$

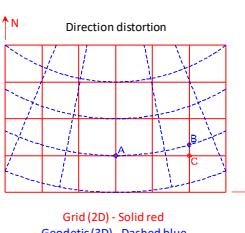
Systematic error - Can be mathematically compensated

Slide 51/85

Society of Land Surveyors of Iowa

IV. Grid Systems

C. Distortions


The two distortions are

2. Direction

3D meridians converge, 2D Grid do not.
3D E/W lines are curved, 2D Grid are straight.

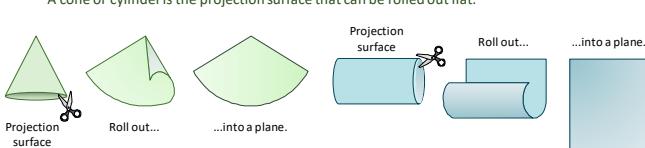
No distortion at center of projection
Increases moving E & W of center

Direction distortion = $f(\text{longitude})$
Systematic error - Can be mathematically compensated

Grid (2D) - Solid red
Geodetic (3D) - Dashed blue

Slide 52/85

Society of Land Surveyors of Iowa


IV. Grid Systems

D. Projection Surfaces

To control or compensate distortions, we must project from a 3D mathematical surface to another mathematical surface that can be developed into a plane without introducing additional distortions.

The ellipsoid is the 3D surface.

A cone or cylinder is the projection surface that can be rolled out flat.

Projection surface
Roll out...
...into a plane.

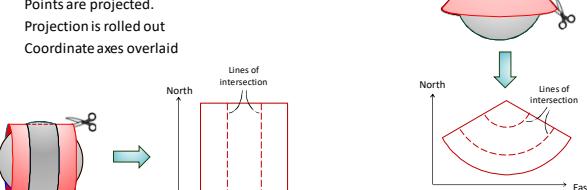
Projection surface
Roll out...
...into a plane.

Slide 53/85

Society of Land Surveyors of Iowa

IV. Grid Systems

D. Projection Surfaces


Secant projections are used

Cone or cylinder cuts through the ellipsoid.

Points are projected.

Projection is rolled out

Coordinate axes overlaid

North
Lines of intersection
East

North
Lines of intersection

Slide 54/85

Society of Land Surveyors of Iowa

IV. Grid Systems

E. Distance Distortion

Distances are reduced from Ground to Grid in two steps:

1. Horizontal ground to geodetic on the ellipsoid = f (orthometric, geoid heights)

Slide 55/85

Society of Land Surveyors of Iowa

IV. Grid Systems

E. Distance Distortion

Distances are reduced from Ground to Grid in two steps:

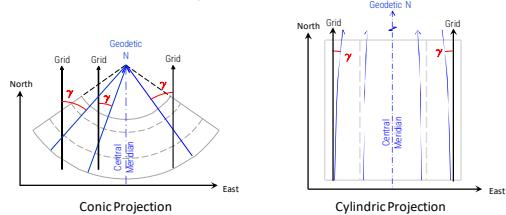
1. Horizontal ground to geodetic on the ellipsoid = f (orthometric, geoid heights)
2. Geodetic to grid = f (grid scale factor)

Slide 56/85

Society of Land Surveyors of Iowa

IV. Grid Systems

E. Distance Distortion


Slide 57/85

Society of Land Surveyors of Iowa

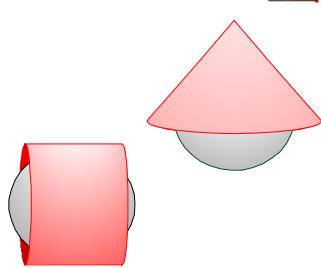
IV. Grid Systems

F. Direction Distortion

Convergence, γ , is angle between Grid and Geodetic North.
 0° at CM, increases to E and to W; $\gamma=f(\text{Longitude})$

Slide 58/85

Society of Land Surveyors of Iowa


IV. Grid Systems

D. Low Distortion Projection (LDP)

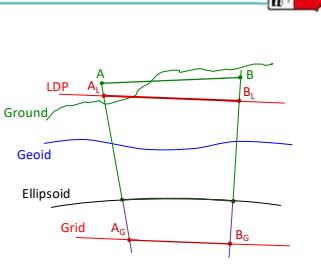
A low distortion projection covers a smaller area and brings the grid closer to Earth surface.

Fitting projection closer to the ground.
minimizes distance distortions.

Because the projection is close to ground level, it may not intersect the ellipsoid.

Slide 59/85

Society of Land Surveyors of Iowa



IV Grid Systems

D. Low Distortion Projection (LDP)

- Low Distortion Projection (LDP)
 - A low distortion projection covers a smaller area and brings the grid closer to Earth surface

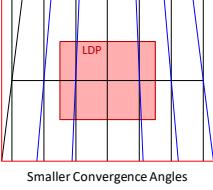
Distortions, ground to grid, are generally in the 1/40,000-1/60,000 range.

Slide 60/85

Society of Land Surveyors of Iowa

IV. Grid Systems

D. Low Distortion Projection (LDP)


A low distortion projection covers a smaller area and brings the grid closer to Earth surface.

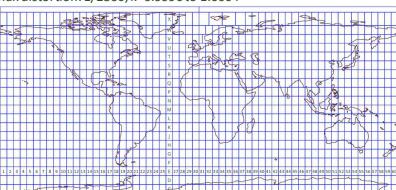
Because it covers less area E-W, convergence angles are smaller and more consistent.

Ground and Grid values, except for control purposes, can be treated as the same.

Slide 61/85

Society of Land Surveyors of Iowa

V. Formal Coordinate Systems



V. Formal Coordinate Systems

A. Universal Transverse Mercator (UTM)

60 adjacent cylindric projections circumventing the Earth
Each projection is 6° wide and runs from 80° S Lat to 84° N Lat.
Numbered 1 to 60 from west to east and lettered C to X south to north
Max distortion: 1/2500; k=0.9996 to 1.0004

Same zones used in NAD 27 and NAD 83(xx).
Not NGS designed, but are included in NSRS and supported in NCAT.

Slide 63/85

Society of Land Surveyors of Iowa

V. Formal Coordinate Systems

B. State Plane Coordinates (SPC)

Designed by NGS (C&GS), included in NSRS and supported in NCAT

- 1. NAD 27**
Development began in 1930s
Maximum distance distortion 1/10,000 (ellipsoid to grid)
 $k = 0.9999$ to 1.0001
→ multiple zones in most states
- 2. NAD 83(xx)**
Some zone reshuffling

Slide 64/85

Society of Land Surveyors of Iowa

V. Formal Coordinate Systems

C. Current Iowa Systems

- 1. State Plane Coordinate (SPC) system**
Projection: Conic
Zones: 2
Max Distortion (ellipsoid to grid): 1/10,000
- 2. Universal Transverse Mercator (UTM)**
Zone 14: Projection: Cylindric
Zones: 1+
Max Distortion (ellipsoid to grid): 1/2500

Slide 65/85

Society of Land Surveyors of Iowa

V. Formal Coordinate Systems

C. Current Iowa Systems

- 3. Low Distortion: Iowa Regional Coordinate System (IaRCS)**
Projection: Cylindric & Conic
Zones: 14
Max Distortion (ground to grid): 1/40,000

Because these are locally designed, they are not included in NSRS not supported in NCAT.

Slide 66/85

Society of Land Surveyors of Iowa

V. Formal Coordinate Systems

D. State Plane Coordinate System of 2022 (SPCS2022)

Original plan: Three-level system for each state

1. Single state-wide zone
2. Up to three traditional-type SPC zones
3. Multi-zone areas covering less than an entire state (eg, LDPs)

All would be NCAT supported

Feedback from many states:

Local LDPs used more than traditional SPC systems
Petitioned NGS to include existing LDP systems in SPCS2022 for #2 & #3

Slide 67/85

Society of Land Surveyors of Iowa

V. Formal Coordinate Systems

D. State Plane Coordinate System of 2022 (SPCS2022)

Slide 68/85

Society of Land Surveyors of Iowa

VI. Ground and Grid

VI. Ground and Grid

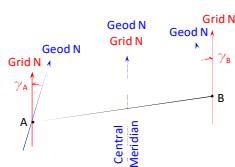
A. Distortion Compensation

2. Direction

The convergence angle, γ , is from Geodetic N to Grid N

It is positive (cw) East of the CM, negative (ccw) West of the CM

To convert Geodetic (Ground) direction to Grid:


$$t = \alpha - \gamma$$

t Grid azimuth
 α Geodetic azimuth
 γ Convergence

Might be significant for an LDP

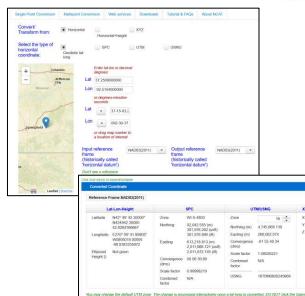
Slide 73/85

Society of Land Surveyors of Iowa

VI. Ground and Grid

B. Reduction Elements

Where do we get the ortho and geoid heights, scale, and convergence angles?


NGS software (*Geodetic Tool Kit*):

NCAT¹
GEOIDXX

¹NCAT does not currently support local LDPs. When NATRF2022 is adopted, NCAT will include NGS-accepted LDPs.

Slide 74/85

Society of Land Surveyors of Iowa

VII. Moving Positions Between Systems

VII. Moving Positions Between Systems

C. Changing Coordinates Between Datums

Some datum-to-datum changes are combinations of conversions and transformations.

Example: determine NAD 83 (2011) SPC coordinates of NAD 27 UTM coordinates.

1. Convert NAD 27 UTM to NAD 27 Geodetic
2. Transform NAD 27 Geodetic to NAD 83 (2011) Geodetic
3. Convert NAD 83 (2011) Geodetic to NAD 83 (2011) SPC

Slide 79/85

Society of Land Surveyors of Iowa

VII. Moving Positions Between Systems

D. Changing a Point's Coordinates

NCAT (NGS Coordinate Transformation Tool)
<https://geodesy.noaa.gov/NCAT/>

Online coordinate conversion and transformation tool.

Current version does not support SPCS2022 nor current LDPs.
Beta version does;
Final NCAT will.

Slide 80/85

Society of Land Surveyors of Iowa

VII. Moving Positions Between Systems

E. Best Way

Use original measurements
Reduce to desired realization grid
Use updated control coordinates
Readjust measurements.

Example:
Original traverse adjusted using NAD 83 (86) control points.
To get NAD 83 (2011), readjust the traverse using updated coordinates of the control points.

CP1, CP2: control points

Slide 81/85

Society of Land Surveyors of Iowa

- I. Introduction
- II. Datums So Far...
- III. New Datums Ahead!
- IV. Grid Systems
- V. Formal Coordinate Systems
- VI. Ground and Grid
- VII. Moving Positions Between Systems
- VIII. NGS Beta Products

Datums Are A'Changin'

Questions?
