

IV. Standards and Specifications

- A. Definitions
- B. Control
- C. Map
- D. Boundary

IV. Standards and Specifications

A. Definitions

Standard: a goal or level to be achieved.

Specification: a set of rules defining procedures to achieve a standard.

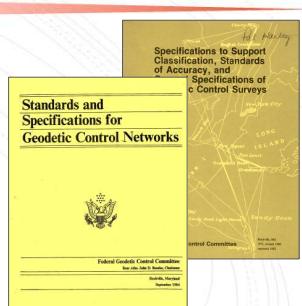
Specifications are a structured and repeatable methodology.

A standard must be achieved by design not by accident.

IV. Standards and Specifications

B. Control Surveys

1. Traditional


a. Responsible Agency

FGCC - Federal Geodetic Control Committee

Representatives from federal agencies, e.g.,

- National Geodetic Survey
- US Geological Survey
- US Forest Service
- US Department of Transportation
- etc.

1984 Standards and Specifications.

IV. Standards and Specifications

B. Control Surveys

1. Traditional

b. Standards

Multi-level standards depending on use.

(1) Horizontal

Standard expressed in relative terms;
minimum distance precision between directly connected points

Precision Use	First Order		Second Order		Third Order	
	Class I	Class II	Class I	Class II	Class I	Class II
Primary national network, Metro area networks, Scientific studies.	1/100,000	1/50,000	1/20,000		1/10,000	1/5,000

Additional control to strengthen and densify primary network.

Further densification, Supplemental control.

Provide greater accessibility for lower accuracy local survey needs.

IV. Standards and Specifications

B. Control Surveys

1. Traditional

b. Standards

Multi-level standards depending on use.

(2) Vertical

Standard expressed in relative terms;
maximum elevation difference to other points based on distance

Relative Accy* Use	First Order		Second Order		Third Order
	Class I	Class II	Class I	Class II	
Basic framework of the National Network and of Metro area control; Extensive engr projects	0.5 mmVK	0.7 mmVK	1.0 mmVK	1.3 mmVK	2.0 mmVK

*K: distance in km

IV. Standards and Specifications

B. Control Surveys

1. Traditional

c. Specifications

Divided into 5 sections

Section	Purpose
Network geometry	General layout to ensure geometric strength and adequate coverage.
Instrumentation	Types and characteristics of equipment of necessary to meet requisite measurement precisions.
Calibration procedures	Nature and frequency of equipment calibration; Tolerance levels.
Field procedures	Appropriate methods of observations; measurement frequency and tolerances.
Office procedures	Data analysis, testing, and adjustments.

IV. Standards and Specifications

B. Control Surveys

3. Current Standards

FGDC-STD-007.2-1998

CONTENTS		Page
2.1	Introduction	2-1
2.1.1	Objectives	2-1
2.1.2	Scope	2-1
2.1.3	Applicability	2-1
2.1.4	Related Standards	2-1
2.1.5	Standards Development Procedures	2-2
2.1.6	Management	2-2
2.2	Testing Methodology and Reporting Requirements	2-3
2.2.1	Accuracy Standards	2-3
2.2.2	Accuracy Determination	2-4
2.2.3	Accuracy Reporting	2-5
2.3	References	2-6

IV. Standards and Specifications

B. Control Surveys

3. Current Standards

a. Position Uncertainty
Standards are defined by position uncertainty at the 95% confidence interval.

Accuracy Classification	1 mm	95% CI, m
2	0.002	
5	0.005	
1 cm	0.010	
2	0.020	
5	0.050	
1 dm	0.100	
2	0.200	
5	0.500	
1 m	1.000	
2	2.000	
5	5.000	
10	10.000	

These are applicable for:
horizontal
ellipsoid height
orthometric height

IV. Standards and Specifications

B. Control Surveys

3. Current Standards

b. Methodology

FGDC-STD-007.2-1998 changes how specifications are defined for a standard. Instead of identifying equipment and specific field procedures, an *Accuracy Determination* procedure is used:

- Minimally constrained least squares adjustment to ensure correct observation weighting and freedom from blunders.
- Local and network accuracy measures computed by random error propagation to determine the provisional accuracy.
- Accuracy checked by comparing minimally constrained adjustment results against established control; must meet a 95% CI.

IV. Standards and Specifications

B. Control Surveys

3. Current Standards

b. Methodology

Accuracies:

Local – point position uncertainty relative to other directly connected adjacent points at the 95% confidence interval.

Network - point position uncertainty relative to the geodetic datum at the 95% confidence interval.

IV. Standards and Specifications

B. Control Surveys

Accuracies example: NSRS point AMWF

A38301 SACS - This is a Secondary Airport Control Station.
A38303 DESIGNATION - AMW F
A38303 STATE/COUNTY - IA/STORY
A38303 USGS QUADRANGLE - SLATER (2018)
A38303 **CURRENT SURVEY CONTROL**
A38303 NAD 83(2011) POSITION: 41 59 55.26242(N) 093 37 31.13374(W) ADJUSTED
A38303 ELEVATION: 451.419 (meters) (06/27/12) ADJUSTED
A38303 NAD 83(2011) EPOCH: 2010-01-01
A38303 **NSRS 3D ORTHO HEIGHT** - 281.00 (meters) 921.9 (feet) GPS OBS
A38303
A38303 NAVD 88 orthometric height was determined with geoid model G00199
A38303 GEODID HEIGHT - 29.651 (meters)
A38303 GEODID HEIGHT X - -300.000 (meters)
A38303 GEODID HEIGHT Y - 4,237,783.275 (meters)
A38303 GEODID HEIGHT Z - 0.000 (meters)
A38303 LAPLACE CORR - -12.31 (seconds)
A38303
A38303 Network accuracy estimates per FGDC Geospatial Positioning Accuracy Standard:
A38303 FDOE (95% Conf. cm) Standard deviation (cm) CORINE
A38303 0.14 0.13 0.21 0.18 0.68 0.0888749
A38303 NETWORK: 0.14 0.13
A38303
A38303 **CLICK HERE** for local accuracies and other accuracy information.

IV. Standards and Specifications

B. Control Surveys

3. Current Standards

b. Methodology

Minimally constrained network adjustment.

All the measurements

Just enough control to fix the network in space

IV. Standards and Specifications

C. Map Accuracy

1. US National Map Accuracy Standards (USNMAS)

Date back to 1937; latest version is 1947

Purposes:

- To assure the graphic accuracy of publicly funded maps.
- Ensure efficient accurate data exchange between federal agencies.

IV. Standards and Specifications

C. Map Accuracy

1. US National Map Accuracy Standards (USNMAS)

a. Horizontal

Error of $\leq 10\%$ of pts tested on map must be within:

1/30 inch at scales $> 1:20,000$,
1/50 inch at scales $< 1:20,000$

Points meas'd at publication scale.
Only for well-defined points.

b. Vertical

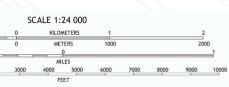
$\leq 10\%$ of elevs tested can exceed one-half the contour interval.

Vertical error can be compensated by allowable horiz error for the map scale

IV. Standards and Specifications

C. Map Accuracy

1. US National Map Accuracy Standard


c. Example: USGS 7.5' topoquad

Horizontal standard

Scale $1:24,000 < 1:20,000$

Use $1/50''$ positional accuracy.
 $1/50'' \times 20,000/1 = 400''$
 $400'' \times 1'/12'' = 33.3'$

90% of tested points must be within $\pm 33.3'$ of their map position.

Vertical standard

$CI = 20'$

$1/2 \times 20' = 10'$

90% of tested points must be within $\pm 10'$ of their vertical map position.

IV. Standards and Specifications

C. Map Accuracy

2. FGDC

FGDC-STD-007.3-1998

National Standard for Spatial Data Accuracy (NSSDA), 1998

Uses Root Mean Squares Errors (RMSE) to determine positional accuracy at 95% CI.

RMS: square root of the average of the squared discrepancies.

e, n, z Positions from map or digital data

E, N, Z Positions from survey measurements

dE, dN, dZ Discrepancy between map and survey positions

$dE = e - E$

$dN = n - N$

$dZ = z - Z$

IV. Standards and Specifications

C. Map Accuracy

2. FGDC

Lotsa equations

$$\text{Mean difference } MPV_E = \frac{\Sigma(dE_i)}{n} \quad MPV_N = \frac{\Sigma(dN_i)}{n} \quad MPV_Z = \frac{\Sigma(dZ_i)}{n}$$

$$\text{Std Dev difference } \sigma_E = \sqrt{\frac{\Sigma(dE_i - MPV_E)^2}{n-1}} \quad \sigma_N = \sqrt{\frac{\Sigma(dN_i - MPV_N)^2}{n-1}} \quad \sigma_Z = \sqrt{\frac{\Sigma(dZ_i - MPV_Z)^2}{n-1}}$$

$$\text{RMSE } RMSE_E = \sqrt{\frac{\Sigma(dE_i)^2}{n}} \quad RMSE_N = \sqrt{\frac{\Sigma(dN_i)^2}{n}} \quad RMSE_Z = \sqrt{\frac{\Sigma(dZ_i)^2}{n}}$$

$$\text{Horiz RMSE } RMSE_R = \sqrt{RMSE_E^2 + RMSE_N^2}$$

$$\text{Vertical RMSE}$$

$$95\% \text{ CI} \quad RMSE_R = 1.7308 \times RMSE_R \quad RMSE_Z = 1.9600 \times RMSE_Z$$

IV. Standards and Specifications

C. Map Accuracy

2. FGDC

Example

Pt	Map			Survey			dE	dN	dZ
	e	n	z	E	N	Z			
GCP1	3,584.394	7,449.934	477.127	3,584.534	7,450.004	477.198	-0.140	-0.070	-0.071
GCP2	3,872.190	12,939.180	412.406	3,872.290	12,939.280	412.396	-0.100	-0.100	0.010
GCP3	3,893.089	1,979.824	487.292	3,893.072	1,979.894	487.190	0.017	-0.070	0.102
GCP4	3,927.194	16,084.129	393.591	3,927.264	16,083.979	393.691	-0.070	0.150	-0.100
GCP5	16,737.074	16,675.999	451.305	16,736.944	16,675.879	451.218	0.130	0.120	0.087

MPV -0.033 0.006 0.006

Std.Dev 0.108 0.119 0.091

Coordinates and elevations are in meters.

RMSE 0.102 0.106

$RMSE_E$ 0.147 0.081

95% CI 0.259 0.160

IV. Standards and Specifications

D. Boundary

1. ALTA/NSPS

American Land Title Association® (ALTA)
National Society of Professional Surveyors (NSPS)

Minimum Standard Detail Requirements
For ALTA/NSPS Land Title Surveys

**MINIMUM STANDARD DETAIL REQUIREMENTS FOR
ALTA/NSPS LAND TITLE SURVEYS
(Effective February 23, 2026)**

IV. Standards and Specifications

D. Boundary

1. ALTA/NSPS

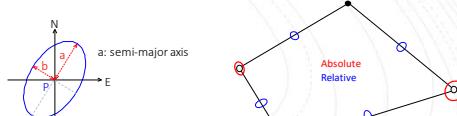
Section 3: Survey Standards and Standards of Care

Sub-Section E: Measurement Standards

i. "Relative Positional Precision" is the accepted indicator of measurement quality on an ALTA/NSPS Land Title Survey. It is defined as the length of the semi-major axis, expressed in meters or feet, of the error ellipse of the line connecting the monuments or witnesses marking adjacent boundary corners of the surveyed property at the 95 percent confidence level. Relative Positional Precision is most commonly estimated by the results of a correctly weighted least squares adjustment of the survey, or alternatively it can be estimated by the standard deviation of the distance between the monument or witness marking any boundary corner of the surveyed property and the monument or witness marking an immediately adjacent boundary corner of the surveyed property (called local accuracy) that can be computed using the full covariance matrix of the coordinate inverse between any given pair of points, understanding that Relative Positional Precision is based on the 95 percent confidence level.

IV. Standards and Specifications

D. Boundary


D. Boundary

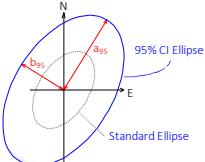
ALIA/NSPS
Section 3: Survey Standards and Standards of Care

Section 3: Survey Standards and Standards Sub-Section E: Measurement Standards

Except for fixed points, each will have its own *absolute* error ellipse which an estimate of a point's position *uncertainty*.

A relative error ellipse is the uncertainty *between* points. This is local accuracy.

IV. Standards and Specifications


D. Boundary

1. ALTA/NSPS

Section 3: Survey Standards and Standards of Care

Sub-Section E: Measurement Standards

Relative Position Precision (RPP) is the semi-major axis length at 95% confidence interval (CI) of a relative ellipse between adjacent property corners.

IV. Standards and Specifications

D. Boundary

1. ALTA/NSPS

Section 3: Survey Standards and Standards of Care

Sub-Section E: Measurement Standards

Maximum RPP is 2 cm (0.07 ft) plus 50 ppm between adjacent corners.

This is treated as a linear error:

$$RPP = 0.07 \text{ ft} + [D \times \frac{50}{4,000,000}]$$

D is the distance between points tested.

Remember: RPP is the *maximum* uncertainty; anything less is fine.
And because it is a result of random errors, it is \pm .

IV. Standards and Specifications

D. Boundary

1. ALTA/NSPS

Section 3: Survey Standards and Standards of Care

Sub-Section E: Measurement Standards

Relative Position Precision

Error ellipses are determined from a properly weighted least squares adjustment of the measurements.

It is *not* a reflection of records research, evidence evaluation, or corner location.

The result of random errors in measurements.

Measurement quality is affected by:

- Equipment
- Conditions
- Procedures
- Personnel

IV. Standards and Specifications

D. Boundary

1. ALTA/NSPS

Section 3: Survey Standards and Standards of Care

Sub-Section E: Measurement Standards

"For any measurement technology or procedure used on an ALTA/NSPS Land Title Survey, the surveyor must (1) use appropriately trained personnel, (2) compensate for systematic errors, including those associated with instrument calibration, and (3) use appropriate error propagation and measurement design theory (selecting the proper instruments, geometric layouts, and field and computational procedures) to control random errors such that the maximum allowable Relative Positional Precision outlined in Section 3.E.v. below is not exceeded."

Site conditions may affect ability to achieve RPP on each line; must be noted on final plat.

IV. Standards and Specifications

D. Boundary

1. State

a. IAC 193C Engineering and Land Surveying Examining Board

IAC 193C-11.6(542B) Measurements

Only made with instruments and methods capable of the required accuracy
 Measurements on plat shall be in conformance with the instrument capabilities.
 Min unadj'd closure: 1:5000 all traverse surveys, 1:10,000 subdiv boundaries
 Interior angle sum within 30" times the square root of the number of angles.
 Unadj'd meas error at least 1:5,000.
 95% CI Relative positional tolerance:
 a. Subdiv boundaries: ± 0.13 feet + 1:10,000
 b. All other: ± 0.26 feet + 1:5,000

On survey plat: Bearings or angles to the nearest 01 min, dists to 0.1 ft.

IV. Standards and Specifications

D. Boundary

1. State

Chapter 355 Standards for Land Surveying

Sec 355.5 Measurements

Only made with instruments and methods capable of the required accuracy
 Measurements on plat shall be in conformance with the instruments capabilities.
 Interior angle sum within 30" times the square root of the number of angles.
 Dists shown in decimal ft according to federal foot definition
