Compute deflection angles at points B through F for the link traverse below. Identify and perform a math check.
Complete solution
At point B
δ_{B} = 180°00’00”  (30°00’00” + 61°19’50”) = 88°40’10”
Del Ang_{B} = 88°40’10”R
At point C
δ_{C} = 61°19’50” + 43°58’35” = 105°18’25”
Del Ang_{C} = 105°18’25”R
At point D
δ_{D} = 43°58’35” + 76°54’05” = 120°52’40”
Del Ang_{D} = 120°52’40”L
At point E
δ_{E} = 180°00’00”  (76°54’05” + 70°41’05”) = 32°24’50”
Del Ang_{E} = 32°24’50”L
At point F
δ_{F} = 70°41’05”  22°55’50” = 47°45’15”
Del Ang_{F} = 47°45’15”L

Answers
Point
Defl Angle
B
88°40'10" R
C
105°18'25" R
D
120°52'40" L
E
32°24'50" L
F
47°45'15" L
Math check?
The deflection angle sum should be the same as the difference between the beginning and ending bearings. Since both bearings are in the NE quadrant, the total bearing change is (To Bearing  From Bearing):
Adding up the deflection angles:
Tadaa.