## 4. Example

### a. Data

The traverse shown below will be adjusted by all three methods.

 Line Azimuth Length (ft) Lat (ft) Dep (ft) AB 30°00'00" 365.79 +316.783 +182.895 BC 325°33'52" 354.52 +292.395 -200.474 CD 219°03'25" 645.84 -501.508 -406.939 DA 104°12'35" 437.64 -107.428 +424.250 sums: 1083.79 +0.242 -0.268

The traverse misclosure is purposely large so adjustment differences are more easily seen.

• Constants are computed
• Computations are shown for the first line
• Adjusted latitudes and departures are shown in a table along with adjusted lengths and directions

### b. Compass Rule

Set up the adjustment constants using Equations K-3 and K-4.

Adjust the latitude and longitude of each line using Equations K-5 and K-6. Computations for line AB are:

 Line ALat (ft) ADep (ft) Azimuth Length (ft) AB +316.734 +182.949 30°00'40" 365.775 BC +292.347 -200.421 325°34'02" 354.451 CD -501.594 -406.843 219°02'44" 645.847 DA -107.487 +424.315 104°12'54" 437.717 sums: 0.000 0.000

### c. Transit Rule

Set up the adjustment constants using Equations K-7 and K-8.

Adjust the latitude and longitude of each line using Equations K-9 and K-10. Computations for line BC are:

 Line ALat (ft) ADep (ft) Azimuth Length (ft) AB +316.720 +182.935 30°00'37" 365.756 BC +292.337 -200.429 325°33'54" 354.447 CD -501.607 -406.849 219°02'43" 645.861 DA -107.450 +424.343 104°12'34" 437.736 sums: 0.000 0.000

### d. Crandall Method

Set up the adjustment constants using Equations X-11 and -12.

Adjust the latitude and longitude of each line using Equations X-13 and -14. Computations for line AB are:

 Line ALat (ft) ADep (ft) Azimuth Length (ft) AB +316.783 +182.895 30°00'00" 365.752 BC +292.395 -200.474 325°33'52" 354.341 CD -501.508 -406.939 219°03'25" 645.855 DA -107.488 +424.250 104°12'35" 437.842 sums: 0.000 0.000

### e. Comparison of adjusted values

#### (1) Distances

 Line Original Compass Transit Crandall AB 365.79 365.756 365.756 365.752 BC 354.52 354.447 354.447 354.341 CD 645.84 645.861 645.861 645.855 DA 437.64 437.736 437.736 437.842

#### (2) Interior angles

 Point Original Compass Transit Crandall A 105°47'25" 105°47'46" 105°48'03" 105°47'25" B 115°33'52" 115°33'21" 115°33'17" 115°33'52" C 73°29'33" 73°28'42" 73°28'49" 73°29'33" D 65°09'10" 65°10'11" 65°09'51" 65°09'10"

The Crandall Method puts all the corrections into distances so angles do not change from their original values. Because the Compass and Transit Rules modify the angles, they both also change the initial azimuth from 30°00'00"; the starting azimuth is unaffected with the Crandall Method.

If the initial direction must be held, then the direction of each line in the Compass and Transit Method adjustments should be rotated by a constant. The constant is the difference between the initial and adjusted directions of the first line. Even though rotating each line the same amount changes the latitudes and departures, traverse closure is not affected.